Highway Safety Improvement Program Orange County Grant Workshop

August 1, 2018

Key Application Parameters

HSIP Priorities for Cycle 9

- Safety Performance Targets
- Strategic Highway Safety Plan
- 9 Proven Safety Countermeasures
- Data Improvements
- Ped/Bike Crashes

See Recorded Webinar & Slides from Caltrans here:

http://www.dot.ca.gov/hq/LocalPrograms/HSIP/apply_nowHSIP.htm

What's New in Cycle 9

- \$140-160 million available
 - Min/Max: \$100k/\$10M per application
 - No limit on applications per agency
- Electronic-only application submittal
- Use PDF "HSIP Analyzer" tool
- Minimum 3.5 B/C Ratio (BCR)
 - Cycle 8 (2016) Average BCR was 12.4 (where BCR applicable)
- 6 Application Categories

Version Date: May 11, 2018			HSIP Analyzer
Print Form			
	HSIP	ANALYZER	
Cost Estin	nate, Crash Data ar	nd Benefit Cost Ratio (BCR) Calculation	
	, , .	ovement Program (HSIP) Application	
		ons in "Manual for HSIP Analyzer". Completing the HS cation with fatal flaws that will be disqualified from th	
		elds are calculated and read-only. This is a dynamic for y error messages in red appear, fix the errors prior to p	
. Application ID, Project Lo	cation and Project De	escription (copy from the HSIP Application Form):
Application ID:	Typology 1 Comme	rcial	
	71 072 2	us 'Calc' as the file name (e.g. '07-Los Angeles-OlCalc.pdf').	
Project Location: Ty (limited to 250 characters)	pology_1_Commercial		
Project Description: Ty (limited to 250 characters)	pology_1_Commercial		
2. Application Category (Ch	eck one):		•
Application Categories that rec	quire a Benefit Cost Ratio (BCR):	
Common BCR Applica	tion Set-aside for	r High Friction Surface Treatment	
Application Categories that do	NOT require a Benefit Cos	t Ratio (BCR):	
Set-aside for Guardrail	Upgrades	Set-aside for Horizontal Curve Signing	
Set-aside for Pedestrian	n Crossing Enhancements	Set-aside for Tribes	
desire that this applica	tion will be considered as a g under the set-aside catego	BCR is selected above, check this box to indicate your of Common BCR Application as well in case it does not any. If this box is checked, a benefit cost analysis is	
A safety benefit cost analysis evaluation and Benefit Cost F		ation. This tool will guide through cost estimate, safety b	oenefit

Summary of Application Categories

		Statewide	Max Amount Per		
No.	Application Category (AC)	Funding Level	Agency	BCR Required?	Project Selection Criteria
		≥75% of HSIP		Yes, minimum	
AC #1	Common BCR Application	Cycle 9 Funding	\$10 million	3.5	BCR
	Set-Aside for High Friction		(AC #1 and #2	Yes, minimum	
AC #2	Surface Treatment	≤\$5 million	combined.)	2.5	BCR
					1. No funding for this set-aside in Cycle 8;
					2. Agency's total Fatal and Severe Injury
					(F+SI) crashes in the last three years from
	Set-Aside for Guardrail				Statewide Integrated Traffic Records
AC #3	Upgrades	≤\$20 million	\$1 million	No	System (SWITRS)
	Set-Aside for Horizontal				1. Agency's total F+SI crashes in the last
AC #4	Curve Signing	≤\$5 million	\$250 thousand	No	three years from SWITRS
					1. No funding for this set-aside in Cycle 8;
					2. Agency's total Pedestrian and Bike F+SI
	Set-Aside for Pedestrian				crashes in the last three years from
AC #5	Crossing Enhancements	≤\$8 million	\$250 thousand	No	SWITRS
AC #6	Set-Aside for Tribes	≤\$2 million	\$250 thousand	No	

Note: AC #2 through #6: Maximum Federal Reimbursement Ratio is 100%

Tips & Guidance

Understanding Crash Reduction Factors

- Crash Reduction Factor (CRF): an indication of the effectiveness of a particular treatment, measured by the percentage of crashes it is expected to reduce.
 - E.g. 25% reduction in crashes
- Crash Modification Factor (CMF): a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure
 - CRF = 1 CMF
- Local Roadway Safety Manual includes approved list of countermeasures for HSIP with associated CRF
 - Not an exhaustive list
 - New research continues to provide more data on effectiveness

Install bicycle lanes	
Description:	
Prior Condition: No dedicated on-roa	d painted cycle lane
Category: Bicyclists	
Study: The Effect of Cycle Lanes on Cy	cling Numbers and Safety, Koorey and Parsons, 2016
Star Quality Rating:	[View score details]
	Crash Modification Factor (CMF)
Value:	0.77
Adjusted Standard Error:	
Unadjusted Standard Error:	0.24
	Crash Reduction Factor (CRF)
Value:	23 (This value indicates a decrease in crashes)
Adjusted Standard Error:	
Unadjusted Standard Error:	24

HSIP Eligible Countermeasures

Local Roadway Safety A Manual for California's Local Road Owners

Table 1. Countermeasures for Signalized Intersections

No.	Туре	Countermeasure Name	Crash Type	CRF	Expected Life (Years)	Federal Funding Eligibility	Systemic Approach Opportunity?
S1	Lighting	Add intersection lighting (S.I.)	Night	40%	20	100%	Medium
52	Signal Mod.	Improve signal hardware: lenses, back-plates, mounting, size, and number	All	15%	10	100%	Very High
S3	Signal Mod.	Improve signal timing (coordination, phases, red, yellow, or operation)	All	15%	10	50%	Very High
S4	Signal Mod.	Provide Advanced Dilemma Zone Detection for high speed approaches	All	40%	10	100%	High
S5	Signal Mod.	Install emergency vehicle pre-emption systems	Emergency Vehicle	70%	10	100%	High
S6	Signal Mod.	Provide protected left turn phase (left turn lane already exists)	All	30%	20	100%	High
S7	Signal Mod.	Convert signal to mast arm (from pedestal-mounted)	All	30%	20	100%	Medium
S8	Operation/ Warning	Install raised pavement markers and striping (Through Intersection)	All	10%	10	100%	Very High
59	Operation/ Warning	Install flashing beacons as advance warning (S.I.)	All	30%	10	100%	Medium
\$10	Operation/ Warning	Install cameras to detect red-light running	N/A	N/A	N/A	N/A	N/A
S11	Operation/ Warning	Improve pavement friction (High Friction Surface Treatments)	All	40%	10	100%	Medium
S12	Geometric Mod.	Install raised median on approaches (S.I.)	All	25%	20	90%	Medium
S13	Geometric Mod.	Create directional median openings to allow (and restrict) left-turns and u-turns (S.I.)	All	50%	20	90%	Medium
\$14	Geometric Mod.	Install right turn lane (S.I.)	N/A	N/A	A/A	A\/A	N/A
\$15	Geometric Mod.	Install left-turn lane (signal has no left-turn phase – before and after)	N/A	N/A	N/A	N/A	N/A
\$16	Geometric Mod.	Install left-turn lane (signal has a left-turn phase - before and after)	N/A	N/A	N/A	N/A	N/A
S17	Geometric Mod.	Install left-turn lane and add turn phase (signal has no left-turn lane or phase before)	All	55%	20	90%	Low
S18	Geometric Mod.	Convert intersection to roundabout (from signal)	All	Varies	20	100%	Low
S19	Ped and Bike	Install pedestrian countdown signal heads	P&B	25%	20	100%	Very High
520	Ped and Bike	Install pedestrian crossing (S.I.)	P & B	25%	20	100%	High
S21	Ped and Bike	Install advance stop bar before crosswalk (Bicycle Box)	P&B	15%	10	100%	Very High
\$22	Ped and Bike	Install pedestrian overpass/underpass	N/A	N/A	N/A	N/A	N/A
S23	Geometric Mod.	Install pedestrian median fencing on approaches	P&B	35%	20	90%	Low

S19, Install pedestrian countdown signal heads

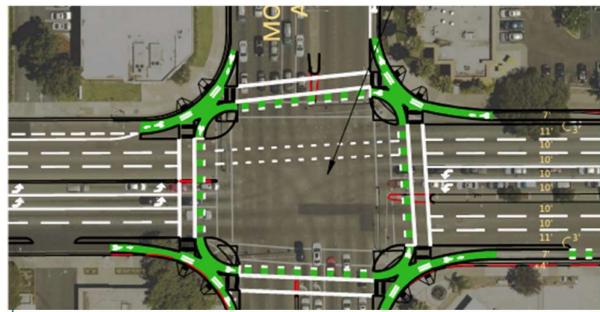
Fur	nding Eligibility	Crash Types Addressed	CRF	Expected Life
1009	6 federal funding	Pedestrian and Bicycle	25%	20 years
Notes:	This CM only applies countdown heads.	to "Ped & Bike" crashes occurring in	the intersection	/crossing with the ne

Where to use:

Signals that have signalized pedestrian crossing with walk/don't walk indicators and where there have been pedestrian vs. vehicle crashes.

Why it works:

A pedestrian countdown signal contains a timer display and counts down the number of seconds left to finish crossing the street. Countdown signals can reassure pedestrians who are in the crosswalk when the flashing "DON'T WALK" interval appears that they still have time to finish crossing. Countdown signals begin counting down either when the "WALK" or when the flashing "DON'T WALK" interval appears and stop at the beginning of the steady "DON'T WALK" interval. These signals also have been shown to encourage more pedestrians to use the pushbutton rather than jaywalk.


General Qualities (Time, Cost and Effectiveness):

Costs and time of installation will vary based on the number of intersections included in this strategy and if it requires new signal controllers capable of accommodating the enhancement. When considered at a single location, these low cost improvements are usually funded through local funding by local crews. However, This CM can be effectively and efficiently implemented using a systematic approach with numerous locations, resulting in moderate cost projects that are more appropriate to seek state or federal funding.

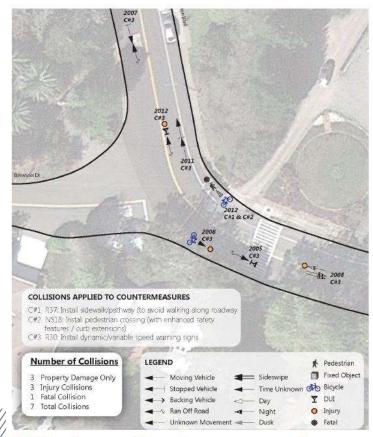
FHWA CMF Clearinghouse: Crash Types Addressed: Pedestrian, Bicycle CRF: 25%

HSIP TIPS: Getting Creative

- Work with Caltrans on applying for innovative treatments
- Additional CM & CRF resources:
- FHWA Toolbox of Countermeasures and Their Potential Effectiveness for Pedestrian Crashes
- PBIC Evaluation of Bicycle-Related/Pedestrian-Related Roadway Measures
- NCHRP Application of Pedestrian Crossing Treatments for Streets and Highways

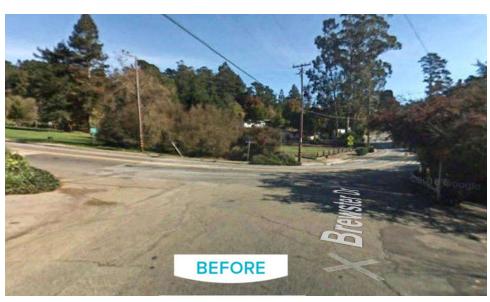


Proposed Fremont Boulevard Protected Intersection and Separated Bikeway Design at Mowry Avenue per the City's Successful HSIP Grant Application

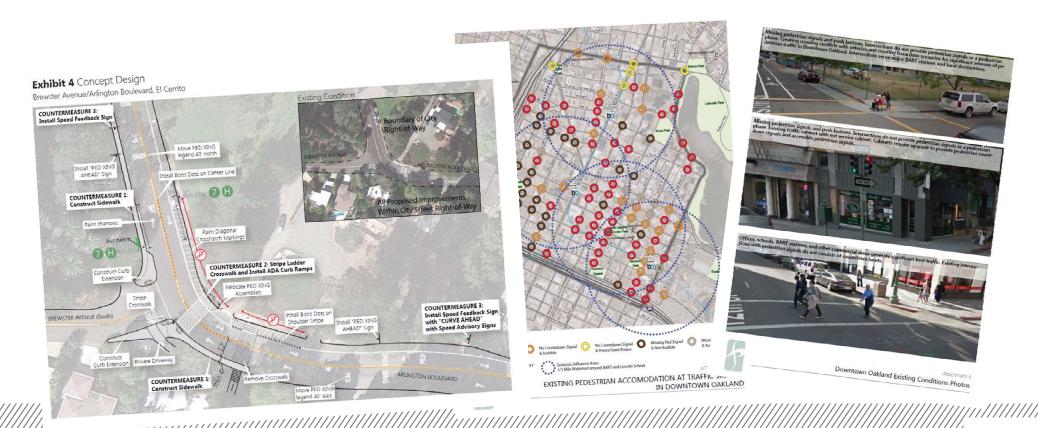

HSIP TIPS: Key Constraints

- Federal Reimbursement Rate and local match
- Applicants with Delayed HSIP Projects
- Non-safety project components
- Countermeasure constraints
- High-cost countermeasures
- \$100k minimum

HSIP TIPS: Example Applications



Existing conditions photos with key issues highlighted.


Collision diagram with countermeasure connections.

HSIP TIPS: Example Applications

HSIP TIPS: Example Applications

HSIP TIPS: Application Checklist

- Project location and project description
- Location map, plans, and photos of existing conditions
- Roadway characteristics (classification, speed, ADT)
- Share of benefit to motorized and nonmotorized travel
- Narrative (identification of need, potential to address safety issues, crash data evaluation, prior attempts)

- Project cross-section (if applicable)
- Collision diagrams and collision lists
- HSIP Analyzer (countermeasure selection, cost estimate, B/C calculation)
- Warrants (if applicable)
- Letters of support (required for state highways)
- Engineer's checklist

Leveraging OCTA Systemic Safety Plan

Table 1. Countermeasures for Signalized Intersections

No.	Туре	Countermeasure Name	Crash Type	CRF	Expected Life (Years)	Federal Funding Eligibility	Systemic Approach Opportunity?	
S1	Lighting	Add intersection lighting (S.I.)	Night	40%	20	100%	Medium	
52	Signal Mod.	Improve signal hardware: lenses, back-plates, mounting, size, and number	All	15%	10	100%	Very High	
S3	Signal Mod.	Improve signal timing (coordination, phases, red, yellow, or operation)	All	15%	10	50%	Very High	
54	Signal Mod.	Provide Advanced Dilemma Zone Detection for high speed approaches	All	40%	10	100%	High	
			F					

3. How were the safety needs and potential countermeasures for this project <u>first</u> identified?

4. California established Systemic Safety Analysis Report Program (SSARP) in 2016. Was this project identified through the

5. What is the primary mode of travel intended to be benefited by this project?

6. Approximate percentage of project cost going to improvements related to motorized travel:

7. Approximate percentage of project cost going to improvements related to non-motorized travel: |100 | %

8. Provide the number of intersections and the length of roadways included in the project (enter 0 if not applicable):

Top 15 Crash Typologies

- ★ 1. Commercial Corridor

- 2. Signalized Intersections, Angle Crashes

- 3. Contra-Flow Bicycle Riding

- 4. Crossing at Unsignalized Intersection

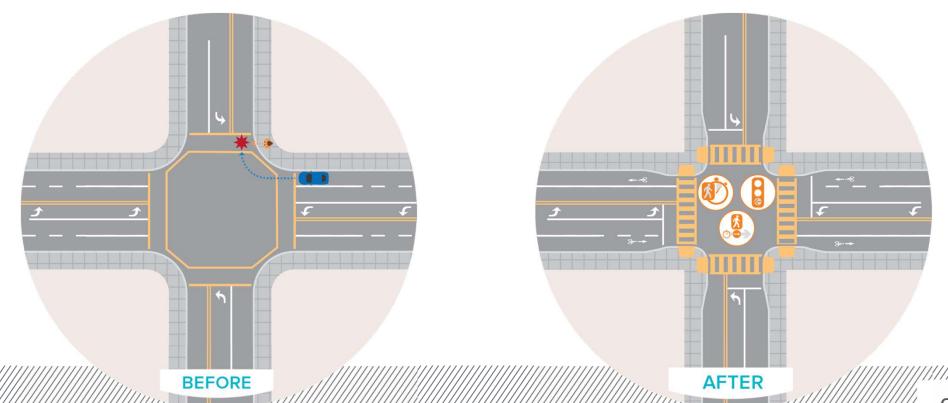
- ★ 5. Dual Right Turn/High Right Turn Volume

Top 15 Crash Typologies

- 7. Single-Family Residential Area
- 8. MPAH Serving Bicyclists
- ♣ 9. Trail Crossing
- ★ 10.Driveway Turns

Top 15 Crash Typologies

- 11.Senior and Children-Serving Land Uses
- ★ 12.Skewed Intersection
- 13. Coastal Uncontrolled Pedestrian Crossing
- 14.Unsafe Speed on Limited Access Arterial
- ★ 15.Parallel Option to High-Volume Arterial



HSIP Analyzer & Application

Typology 11: Senior and Children-Serving Land Uses

With Pedestrian Crashes

20

Project Characteristics

- 5 signalized intersections and approx. 1 mile corridor
- History of fatal and severe injury collisions

Select Safety Countermeasures

I.1 Select up to 3 countermeasures (CMs) to be tested in the Engineer's Estimate:

Number of CMs to be used in this project: 3

CM No. 1:	S6: Provide protected left turn phase (left turn lane already exists)	•
CM No. 2:	R36: Install bike lanes	•
CM No. 3:	S21: Install advance stop bar before crosswalk (Bicycle Box)	•

Cost Estimate

I.2 Detailed Engineer's Estimate for Construction Items:

Cost breakdown by CMs. For each item, enter a cost percentage for each of the CMs and 'Other Safety-Related' (OS) components. (e.g. enter 10 for 10%). The cost % for 'Non-Safety-Related' (NS) components is calculated.

	No.	Item Description	Unit	Quantity	Unit Cost	Total	% for CM#1 (S6)	% for CM#2 (R36)	% for CM#3 (S21)	% for OS*	% for NS**
+	1	High Visibility Crosswalks	lf	1,100	\$70.00	77,000	%	%	%	100%	0
+	2	Curb Extensions	sf	8,000	\$21.00	168,000	%	%	%	100%	0
+	3	Curb Ramp	each	40	\$1272.00	50,880	%	%	%	100%	0
+	4	Ped Push Buttons on Posts	each	40	\$1400.00	56,000	%	%	%	100%	0
+	5	Signal mod for protected left turn	appro	10	\$55000.00	550,000	100%	%	%	%	0
+	6	Extend ped crossing time	locatic	5	\$500.00	2,500	%	%	%	100%	0
+	7	Class II Bike Lane Striping	1f	10,560	\$1.95	20,592	%	100%	%	%	0
+	8	Bikeway Route Signage	each	22	\$200.00	4,400	%	100%	%	%	0
+	9	Bike Lane Pavement Marking	each	52	\$125.00	6,500	%	100%	%	%	0
+	10	Remove Paint Stripe	lf	10,560	\$2.50	26,400	%	100%	%	%	0
+	11	Solid Double Yellow Centerline	lf	10,560	\$1.40	14,784	%	%	%	100%	0
+	12	Stop bar	1f	300	\$2.00	600	%	%	100%	%	0
+	13	Mobilization	1s	1	\$97765.60	97,766	33%	33%	1%	33%	0
+	14	Traffic control	1s	1	\$97765.60	97,766	33%	33%	1%	33%	0
		Weighted			Average (%) Total (\$)		52%	10%	0%	37%	

To set all 'HSIP/Total (%)" in the below table to the above maximum FRR, click "Set":

Description	Total Cost	HISP/Tota (%)	al	HSIP Funds	Local/Other Funds
	Preliminary E	ngineering (I	PE)	Phase	
Environmental	\$97,800	90	%	\$88,020	\$9,780
PS&E	\$146,700	90	%	\$132,030	\$14,670
Subtotal - PE	\$244,500	90	%	\$220,050	\$24,450
	Right of W	Jay (ROW)	Phas	se	
Right of Way Engineering	\$0	90	%	\$0	\$0
Appraisals, Acquisitions & Utilities	\$0	90	%	\$0	\$0
Subtotal - Right of Way (ROW)	\$0		%	\$0	\$0
	Construct	ion (CON) I	has	e	
Construction Engineering (CE)	\$97,800	90	%	\$88,020	\$9,780
Construction Items	\$1,407,900 (Read only - from Section I)	90	%	\$1,267,110	\$140,790
Subtotal - Construction	\$1,505,700	90	%	\$1,355,130	\$150,570
PROJECT TOTAL	\$1,750,200	90	%	\$1,575,180	\$175,020

Countermeasure Groups

III.1 List of Project Locations and Location Groups

List all locations/sites included in this project by groups. The locations entered in Table III.1 below will be automatically populated in the crash data tables in III.2.

Based on the criteria described on the last page, the locations/sites need to be divided into

groups

Table III.1 List of Project Locations by Groups

Highlighted fields must be filled in. For each group:

- 1) Must select a Location Type;
- 2) Initially each group has one location line. Click "+"/"-" to add a new line/delete an existing line;
- 3) Enter location description for each line. The same descriptions will be auto-populated in III.2.
- *Note: If your project has a large number of locations, please aggregate some locations into one description, e.g. 10 stop controlled intersections, 5 horizontal curves, etc., as long as they have similar features and the safety improvements to be implemented are the same.

	No.	No. in Group	(Intersect	Location Description ion Name or Road Limit or General Description)				
	GROU	P1	Select Location Type:	S (Signalized Intersections)	•			
+	1	Gl-1	Intersections					
	GROU	P 2	Select Location Type:	R (Roadways)	•			
+	2	G2-1	Corridor	orridor				

Crash Data

Please check the CMs for this location group. All the CMs that have passed the test in Section I AND match the location type of this group are listed below.

	No.	Countermeasure (CM) Name	CM Type*	Crash Reduction Factor (CRF)	Expected Life (Years)	Crash Type	Federal Funding Eligibility
	1	R36: Install bike lanes	R	0.35	20	Ped & Bike	90%
*CM Type: S-Signalized Intersection; NS-Non-Signalized Intersection; R-Roadway.							

Step 2: Provide crash data.

2.1 Crash Data Period: must be between 3 and 5 years.

2.2 Fill out the crash data table(s) for the crash type(s) as required by the selected countermeasure(s) in Step 1.

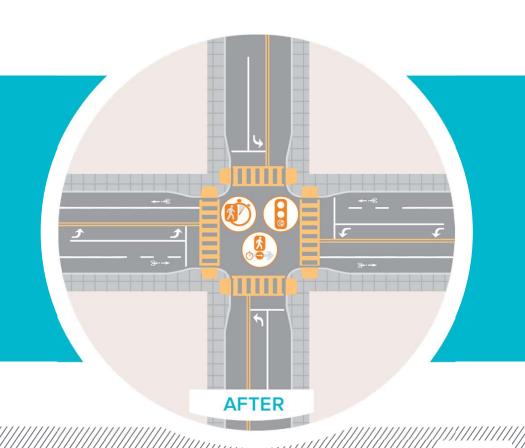
Based on the countermeasures selected in Step 1, the crash data types to be provided are:

(1) Ped & Bike

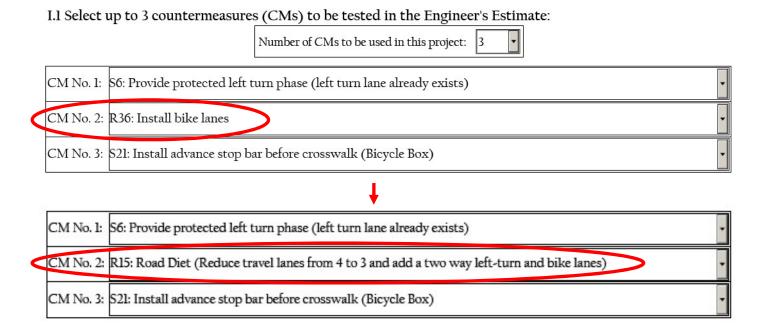
	Crash Data Table for Crash Type: <u>Pedestrians and Bicyclists Involved (P&B)</u>											
No.	No. Location (from Table III.1) Fatal Severe Injury (P&B) Other Visible Injury (P&B) (P&B) Total											
1	Corridor	3	3	5	7	20	38					
	Total	3	3	5	7	20	38					

Results

IV.1 Benefit Summary by location groups


Group No.	Group Info/Data*	Benefit from CM #l	Benefit from CM #2	Benefit from CM #3	Total Benefit of the group
1	Location type: S (Signalized Intersections) Number of location(s): 1 Number of selected countermeasure(s): 2 (S6 S21) Crash Data Information: Crash data period (years): 5 Number of crashes(F/SI/OVI/I-CP/PDO)*: All: 1,0,16,40,100 Ped & Bike: 1,0,8,9,20	\$9,048,001	\$0	\$704,572	\$9,752,573
2	Location type: R (Roadways) Number of location(s): 1 Number of selected countermeasure(s): 1 (R36) Crash Data Information: Crash data period (years): 5 Number of crashes(F/SI/OVI/I-CP/PDO)*: Ped &: Bike: 3,3,5,7,20	\$0	\$18,720,520	\$0	\$18,720,520
Sum		\$9,048,001	\$18,720,520	\$704,572	\$28,473,093

^{*}Number of crashes: five crash numbers are for Fatal (F), Severe Injury (SI), Other Visible Injury (OVI), Injury - Complaint of Pain (I-CP), and Property Damage Only (PDO), respectively.


IV.2. Project Benefit and BCR Summary

No.	Countermeasure Name	Benefit	Cost	Resulting B/C
1	S6	\$9,048,001	\$1,454,422	6.2
2	R36	18,720,520	\$289,730	64.6
3	S21	\$704,572	\$6,048	116.5
	Entire Project	28,473,093	\$1,750,200	16.3

\$1,750,200 TOTAL BENEFIT \$28,473,093 B/C RATIO 16.3

Select Safety Countermeasures

Cost Estimate

I.2 Detailed Engineer's Estimate for Construction Items:

Cost breakdown by CMs. For each item, enter a cost percentage for each of the CMs and 'Other Safety-Related' (OS) components. (e.g. enter 10 for 10%). The cost % for 'Non-Safety-Related' (NS) components is calculated.

	No.	Item Description	Unit	Quantity	Unit Cost	Total	% for CM#1 (S6)	% for CM#2 (R36)	% for CM#3 (S21)	% for OS*	% for NS**
+	1	High Visibility Crosswalks	lf	1,100	\$70.00	77,000	%	%	%	100%	0
+	2	Curb Extensions	sf	8,000	\$21.00	168,000	%	%	%	100%	0
+	3	Curb Ramp	each	40	\$1272.00	50,880	%	%	%	100%	0
+	4	Ped Push Buttons on Posts	each	40	\$1400.00	56,000	%	%	%	100%	0
+	5	Signal mod for protected left turn	approx	10	\$55000.00	550,000	100%	%	%	%	0
+	6	Extend ped crossing time	locatic	5	\$500.00	2,500	%	%	%	100%	0
+	7	Class II Bike Lane Striping	1f	10,560	\$1.95	20,592	%	100%	%	%	0
+	8	Bikeway Route Signage	each	22	\$200.00	4,400	%	100%	%	%	0
+	9	Bike Lane Pavement Marking	each	52	\$125.00	6,500	%	100%	%	%	0
+	10	Remove Paint Stripe	lf	10,560	\$2.50	26.400	26	10070	76	0/.	0
+	11	Solid Double Yellow Centerline	lf	10,560	\$1.40	14,784	%	%	%	100%	0
+	12	Stop bar	1f	300	\$2.00	600	90	70	10070	%	0
+	13	Mobilization	1s	1	\$97765.60	97,766	33%	33%	1%	33%	0
+	14	Traffic control	1s	1	\$97765.60	97,766	33%	33%	1%	33%	0
				Weighted	Average (%) Total (\$)	\$1,173,187	52%	10%	0%	37%	

I.2 Detailed Engineer's Estimate for Construction Items:

Cost breakdown by CMs. For each item, enter a cost percentage for each of the CMs and 'Other Safety-Related' (OS) components. (e.g. enter 10 for 10%). The cost % for 'Non-Safety-Related' (NS) components is calculated.

	No.	Item Description	Unit	Quantity	Unit Cost	Total	% for CM#1 (S6)	% for CM#2 (R15)	% for CM#3 (S21)	% for OS*	% for NS**
+	1	High Visibility Crosswalks	lf	1,100	\$70.00	77,000	96	96	96	100%	(
F	2	Curb Extensions	sf	8,000	\$21.00	168,000	%	96	96	100%	0
+	3	Curb Ramp	each	40	\$1272.00	50,880	96	96	96	100%	C
+	4	Ped Push Buttons on Posts	each	40	\$1400.00	56,000	96	96	96	100%	C
+	5	Signal mod for protected left turn	approa	10	\$55000.00	550,000	100%	96	96	%	(
+	6	Extend ped crossing time	locatio	5	\$500.00	2,500	96	96	96	100%	(
+	7	Class II Bike Lane Striping	lf	10,560	\$1.95	20,592	96	100%	96	%	C
+	8	Bikeway Route Signage	each	22	\$200.00	4,400	96	100%	96	96	(
+	9	Bike Lane Pavement Marking	each	52	\$125.00	6,500	96	100%	96	96	(
+	10	Remove Paint Stripe	lf	10,560	\$2.50	26,400	OK.	10000	04	96	(
+	11	Solid Double Yellow Centerline	lf	10,560	\$1.40	14,784	%	100%	96	96	(
+	12	Stop bar	lf	300	\$2.00	600	76	06	10000	70	
+	13	Mobilization	ls	1	\$97765.60	97,766	33%	33%	196	33%	C
+	14	Traffic control	ls	1	\$97765.60	97,766	33%	33%	196	33%	(
				Weighted	Average (%) Total (\$)	\$1,173,187	52%	12%	0%	36%	

Crash Data

Please check the CMs for this location group. All the CMs that have passed the test in Section I AND match the location type of this group are listed below.

	No.	Countermeasure (CM) Name	CM Type*		Reduction or (CRF)	Expected Life (Years)	Crash Type	Federal Funding Eligibility
\boxtimes	1	R36: Install bike lanes	R	0.35		20	Ped & Bike	90%
	*CM Type: S-Signalized Intersection; NS-Non-Signalized Intersection; R-Roadway.							

Step 2: Provide crash data.

2.1 Crash Data Period: must be between 3 and 5 years.

from (MM/DD/YYYY): 01/01/2011 To (MM/DD/YYYY): 12/31/2015 Crash Data Period (years) = 5

2.2 Fill out the crash data table(s) for the crash type(s) as required by the selected countermeasure(s) in Step 1.

(1) Ped & Bike

	Crash Data Table for Crash Type: <u>Pedestrians and Bicyclists Involved</u> (P&B)								
No.	Location (from Table III.1)	Fatal (P&B)	Severe Injury (P&B)	Other Visible Injury (P&B)	Complaint of Pain (P&B)	PDO (P&B)	Total		
1	Corridor	3	3	5	7	20	38		
	Total	3	3	5	7	20	38		

Please check the CMs for this location group. All the CMs that have passed the test in Section I AND match the location type of this group are listed below.

Funding pility

tep 2: Provide crash data.

2.1 Crash Data Period: must be between 3 and 5 years.

from (MM/DD/YYYY): 01/01/2011 To (MM/DD/YYYY): 12/31/2015 Crash Data Period (years) = 5

2.2 Fill out the crash data table(s) for the crash type(s) as required by the selected countermeasure(s) in Step 1. Based on the countermeasures selected in Step 1, the crash data types to be provided are:

(l) All

	Crash Data Table for Crash Type: ALL							
No.	Location (from Table III.1)	Fatal (ALL)	Severe Injury (ALL)	Other Visible Injury (ALL)	Complaint of Pain (ALL)	PDO (ALL)	Total	
1	Corridor	4	6	28	51	200	289	
	Total	4	6	28	51	200	289	

Results

IV.1 Benefit Summary by location groups

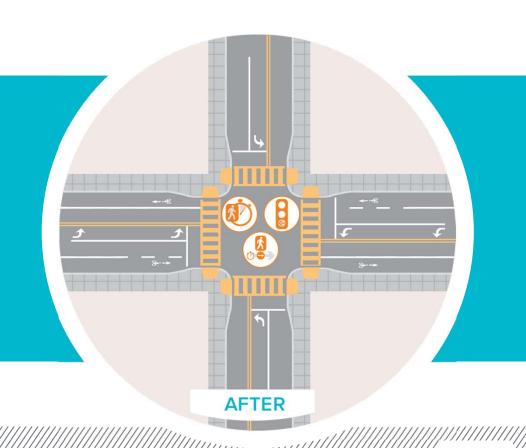
	, , ,				
Group No.	Group Info/Data*	Benefit from CM #1	Benefit from CM #2	Benefit from CM #3	Total Benefit of the group
1	Location type: S (Signalized Intersections) Number of location(s): 1 Number of selected countermeasure(s): 2 (S6 S2l) Crash Data Information: Crash data period (years): 5 Number of crashes(F/SI/OVI/I-CP/PDO)*: All: 1,01,640,100 Ped & Bike: 1,0,8,9,20	\$9,048,001	\$0	\$704,572	\$9,752,573
	Location type: R (Roadways) Number of location(s): 1 Number of selected countermeasure(s): 1 (R36) Crash Data Information: Crash data period (years): 5 Number of crashes(F/SI/OVI/I-CP/PDO)*: Ped & Bike: 3,3,7,20	\$0	\$18,720,520	\$0	\$18,720,520
Sum		\$9,048,001	\$18,720,520	\$704,572	\$28,473,093

*Number of crashes: five crash numbers are for Fatal (F), Severe Injury (SI), Other Visible Injury (OVI), Injury - Complaint of Pain (I-CP), and Property Damage Only (PDO), respectively.

IV.2. Project Benefit and BCR Summary

No.	Countermeasure Name	Benefit	Cost	Resulting B/C
1	S6	\$9,048,001	\$1,454,422	6.2
2	R36	18,720,520	\$289,730	64.6
3	S21	\$704,572	\$6,048	116.5
	Entire Project	28,473,093	\$1,750,200	16.3

IV.1 Benefit Summary by location groups


Group No.	Group Info/Data*	Benefit from CM #1	Benefit from CM #2	Benefit from CM #3	Total Benefit of the group
1	Location type: S (Signalized Intersections) Number of location(s): 1 Number of selected countermeasure(s): 2 (S6 S21) Crash Data Information: Crash data period (years): 5 Number of crashes(F/SI/OVI/I-CP/PDO)*: All: 1,0,16,40,100 Ped & Bike: 1,0,8,9,20	\$9,048,001	\$0	\$704,572	\$9,752,573
2	Location type: R. (Roadways) Number of location(s): 1 Number of selected countermeasure(s): 1 (R15) Crash Data Information: Crash data period (years): 5 Number of crashes(F/SI/OVI/I-CP/PDO)*: All: 4,6,28,31,200	\$0	\$35,482,681	\$0	\$35,482,681
Sum		\$9,048,001	\$35,482,681	\$704,572	\$45,235,254

*Number of crashes: five crash numbers are for Fatal (F), Severe Injury (SI), Other Visible Injury (OVI), Injury - Complaint of Pain (I-CP), and Property Damage Only (PDO), respectively.

IV.2. Project Benefit and BCR Summary

No.	Countermeasure Name	Benefit	Cost	Resulting B/C
1	S6	\$9,048,001	\$1,425,915	6.3
2	R15	35,482,681	\$318,355	111.5
3	S21	\$704,572	\$5,929	118.8
	Entire Project	45,235,254	\$1,750,200	25.8

\$1,750,200 TOTAL BENEFIT \$45,235,254 B/C RATIO 25.8

Lean on Prior Planning Efforts

- Projects have been strategically selected, so you are not starting from scratch → opportunities to build on previous work
 - ATP applications
 - Collision data analysis
 - Outreach efforts

Brewster Orive/Arlington Boulevard Public Workshop Summary

By of El Cerrab Public Works Department held a community meeting on July 10, 2012 to do to control utility affects of the property of the pro

the meeting. City staff and the consultants preserved conceptual designs for potential resources the intersection of sevenate Otive and Allington occurs about high speeds and inadequate to the first section and regime concert about high speeds and inadequate to the intersection and regime concert about high speeds and inadequate destination conditions. The community members were largely in favor of the proposal presented by control with the control with a first control with the control with all control with a first control with all control was all control with all control with all control was all control with all control was all control with a control was all control was all control with a control was all cont pedestrian conditions. The commit City staff and the consultant team.

Wlad Wlassowsky City of Oakland Public Works Agency Transportation Services Division 250 Frank H. Ogawa Plaza, Ste 4344 Cakland, CA 94612

City of Oakland Highway Safety Improvement Program Grant Application

On behalf of the San Francisco Bay Area Rapid Transk Obstrict (BART), I am writing to express support On Deman or the Sen Francisco hay Area Rapist Transit District (BART), I am writing to appress support or the City of Ostator's Highway Safety improvement Program (HSDP) grant applications. These registed address, bloods, and venicular collisions for proposing various safety improvements. All four

ATTACHMENT 10A

Integraper informer Exercisor = makens univ. and Lin. aspekinskind door i scrisions.

Market Street and San Pablo Avenue Corridor — West Oakland BART Station (conn.)

nement primaries

Road of Directors adopted a Transis Christed Development Folicy which includes a goal

Road of Directors adopted a Transis Christed Development Folicy which includes a goal

rise are noted where of the selectionable by enhancing must model a New Sto to and from

some to provide the selection of Cardiac Indian and access providers. The providers have been a selection for a discuss to the selection of a contract to the selection of the selection of a contract to the selection of the selection of


the proposed projects and looks forward to seeing disign details should they be do not heritate to contact me or Mannah Endedof Paledol (Bhart, Ero), EAST Senior 1464-6426 if you have any questions or comments about this letter.

ea Rapid Transit District (BART) , Customer Access and Accessibility

Thank You!

Paul Martin

Active Transportation Coordinator (714) 560-5386

pmartin@octa.net
www.octa.net/bike

